Биология и экология

Плазмиды. Понятие и типы плазмид

Наиболее распространённым методом генной инженерии является метод получения рекомбинантных (содержащих чужеродный ген) плазмид, которые представляют собой кольцевые, двухцепочечные молекулы ДНК, состоящие из нескольких пар нуклеотидов и способные к автономной репликации [4].

Для плазмид характерно стабильное существование в нехромосомном состоянии в бактериях. Каждая бактерия помимо основной, не покидающей клетку молекулы ДНК (5*106 пар нуклеотидов), может содержать несколько различных плазмид, которыми она обменивается с другими бактериями.

Плазмиды, размеры которых варьируют от нескольких тысяч до сотен тысяч пар оснований, а число копий на клетку - от одной до нескольких сотен, способны к автономной (независимой от основной хромосомы) репликации и стабильно наследуются в ряду клеточных поколений.

Хотя многие плазмиды дают клеткам-хозяевам ощутимые селективные преимущества (устойчивость к антибиотикам, тяжелым металлам и т.п.), большинство из них являются криптическими, то есть не проявляющимися в фенотипе клеток.

Область начала репликации небольшой плазмиды ColE1, несущей гены устойчивости к колицинам, традиционно используется в генной инженерии при конструировании векторных молекул ДНК, которые находят применение для клонирования и экспрессии в клетках E. coli коротких последовательностей нуклеотидов.

Плазмиды обнаружены у многих бактерий, принадлежащих к разным таксономическим группам. Количество плазмидной ДНК в клетке составляет обычно не более нескольких процентов от клеточного генома, а число плазмид колеблется от 1 до 38. Плазмиды - это линейные или кольцевые ковалентно замкнутые молекулы ДНК, содержащие от 1500 до 40000 пар нуклеотидов. Большинство плазмид состоит из трех групп генов: участка ДНК, ответственного за автономную репликацию плазмиды в клетке; системы генов, обеспечивающих возможность переноса плазмид из одной клетки в другую; генов, определяющих свойства, полезные для клетки-хозяина. Отличительная особенность плазмид - способность к автономной репликации, поэтому минимальное количество ДНК, которое может быть названо плазмидой, - это фрагмент, обеспечивающий автономную репликацию плазмидной ДНК в клетке как единого целого.

Обычно о присутствии плазмид в бактериальной клетке судят по проявлению определенных признаков, к которым относится устойчивость к отдельным лекарственным препаратам, способность к переносу генов при конъюгации, синтез веществ антибиотической природы, способность использовать некоторые сахара или обеспечивать деградацию ряда веществ.

Большинство бактериальных плазмид обладает способностью автономно реплицироваться, имеет фактор несовместимости и фактор переноса. Плазмиды несут множество специальных, детерминируемых каждой отдельной плазмидой маркеров: устойчивость к антибиотикам, тяжелым еталлам, ультрафиолетовому облучению, способность к биосинтезу токсинов.

В качестве векторов могут использоваться опухолеобразующие плазмиды бактерий. Виды Agrobacterium эволюционно родственны клубеньковым бактериям, относящимся к роду Rhizobium, и имеют много общих с ними черт. Однако характер взаимодействия агробактерий с растением имеет своеобразные особенности [6].

Взаимодействие видов Agrobacterium с растениями представляет особый интерес, так как при этом виде паразитизма один из партнеров специфически видоизменяет свойства хозяина, встраивая свои гены в его геном. Кроме того, это служит уникальным примером миграции ДНК прокариот в эукариотическую клетку. Хлоропласты и митохондрии содержат полноценную генетическую систему, то есть все компоненты, необходимые для экспрессии генетической информации: ДНК, ДНК-полимеразы, РНК-полимеразы и белоксинтезирующий аппарат (рибосомы, т-РНК, аминоацил-тРНК-синтетазы).