Биология и экология

Белки и липиды

Глутомат синтеза у А. cylindrica локализована в основном в вегетативных клетках, а глутаминосинтетаза — в клетках и гетероцистах. Эти данные, а также опыты с мечеными аммонием и глутамином дают основание полагать, что именно глутамин, а возможно, и аммоний являются переносчиками вновь фиксированного азота из гетероцист в вегетативные клетки. Глутамат переносится из вегетативных клеток в гетероцисты и превращается в аланин, аспарагиновую кислоту, серии.

Другим путем поглощения аммония (например, у Nostos sp.) является орнитиновый цикл, где С02 включается прежде всего в цитруллин, который затем превращается в аспарагин.

Добавление аммония в среду с зеленой водорослью Botryococcus braunii, являющейся продуцентом терпеноидов и жирных кислот, приводит почти к полному ингибированию синтеза терпеноидов и других нерастворимых метаболитов. Вместе с тем в этих условиях наблюдается значительная стимуляция синтеза аланина, глутамина и других аминоксилот, особенно аминолевулиновой кислоты. При добавлении аммония к клеткам, находящимся в темноте, наступает усиленное включение меченого углерода в соединения, образуемые при карбоксилировании фосфоенолпирувата, такие, как глутамин, глутамат и малат. Полученные данные рассматриваются как указание на то, что в присутствии аммония ацетил-КoA — ключевой метаболит, используемый в синтезе углеводородов, перестает включаться в последовательность реакций, приводящих к образованию терпеноидов.

На примере безгетероцистного неазотфиксирующего мутанта Nostoc muscorum изучена способность к использованию а-изомеров 21 аминокислоты в качестве источников азота и углерода при блокировании фотосинтетической ассимиляции СО2. Глутамат, аланин, тирозин и цистеин — токсичны; глутамин, гистидин, аспарагин, триптофан и серии используются в качестве источников азота, аланин, пролин и фенилаланин — в качестве источника углерода, лейцин, изолейцин, лизин, метионин, валин, цитруллин — в качестве источников углерода и азота; аспартат, треонин и глицин не служат ни источником углерода, ни азота.

Следует отметить, что накопление белка и незаменимых кислот в определенной степени связано с влиянием источника освещения. В опытах при облучении Chlorella vulgaris синим светом 2400 лк содержание белка повышается на 21—30 %. Высшие водоросли при красном свете содержат белка на 15 % меньше, чем при флуоресцентном. Качественный состав аминокислот также зависит от спектрального состава света. При выращивании этой водоросли на флуоресцентном свету в белках наблюдается больше лизина и аргинина. Указанное свойство белков используют для получения биомассы водорослей. В этой связи следует назвать съедобную синезеленую нитчатую водоросль Spirulina maxima, содержащую большое количество протеина, включающего метионин, триптофан и другие аминокислоты в концентрациях, равных содержащимся в казеине молока. Названная водоросль образует 50 т сухой массы в год на 1 га, содержащей 35 % сырого протеина, т. е. в 10 раз больше, чем образует его соя. Водоросль легко переваривается, так как в ее клеточных стенках отсутствует целлюлоза.

Биосинтез аминокислоты лизина у грибов, как отмечалось, осуществляется двумя путями. Эти же пути характерны и для водорослей в зависимости от степени их эволюционного развития; через диаминопимелиновую кислоту, как у синезеленых водорослей, или через аминоадипириновую кислоту, как у эвгленовых водорослей. Определены также биосинтетические семейства аминокислот — их предшественники, аминокислоты из которых синтезируют другие аминокислоты. Выявлено, что рост стерильных культур зеленых водорослей Chlorella, Scenedesmus, Coelastrum и Chlorococcum в среде, содержащей NО2-, сопровождается выделением N2О. Образование N2О не связано с фотохимическим превращением NО2- и наблюдается только в интактных клетках водорослей. Процесс этот не ингибируется диуроном, а в случае двух представителей семейства Chlarophyceae он стимулируется в присутствии глюкозы, особенно в темноте, т. е. О2 может включаться в регуляцию выделения N2О. Следовательно, водоросли, очевидно, являются основными продуцентами N2О в водных экосистемах.

Перейти на страницу:
1 2 3