Биология и экология

Потенциал-активируемые натриевые каналы

Методы, которые были использованы для характеристики молекулярной структуры АХР, были также успешно применены к потенциал-активируемым каналам. Ключевыми шагами в этом процессе были биохимическая экстракция и изоляция протеина с последующим выделением клонов кДНК и расшифровкой аминокислотной последовательности. Также как в случае АХР, электрические рыбы – на этот раз угорь Electrophorus electricus – явились богатым источником канального белка, а высокоаффинные токсины, такие как тетродотоксин (ТТХ) и сакситоксин (STX), обеспечили процесс изоляции протеина. Оба этих токсина блокируют ионную проводимость нативных каналов, закупоривая пору открытого канала. Позже натриевые каналы были изолированы из мозга и скелетной мышцы. Натриевый канал, выделенный из электрического угря, состоит из одного крупного (260 кД) пептида и является типичным представителем семейства структурно сходных протеинов.

В мозге млекопитающих ключевая 260 кД – субъединица натриевого канала ассоциирована с двумя дополнительными субъединицами: (36 кД) и (33 кД). Показано, что присутствие субъединицы значительно повышает скорость инактивации натриевого канала. В мозге было найдено несколько различных вариантов мРНК, кодирующих субъединицу, что объясняет наличие разных подтипов натриевого канала. По крайней мере два дополнительных изоформы натриевого канала выделены из скелетной мышце млекопитающих – одна из взрослой мышцы (RSkMl), и другая, характерная для эмбриональной или денервированной мышцы (RSkM). Третья изоформа этого канала обнаружена в сердечной мышцемлекопитающих). После трансляции происходит интенсивное гликозилирование канального белка. Так, около 30% массы натриевого канала угря составляют углеводы, содержащие большие количества сиаловой кислоты.