Биология и экология

Опишите модификации углерода. Почему столь многообразны соединения углерода? Какие особенности строения атома углерода определили его роль в живой природе?

Углерод (лат. Carboneum), С - химический элемент IV группы периодической системы Менделеева. Известны два стабильных изотопа 12С (98,892%) и 13С (1,108%).

Углерод известен с глубокой древности. Древесный уголь служил для восстановления металлов из руд, алмаз - как драгоценный камень. Значительно позднее стали применяться графит для изготовления тиглей и карандашей.

Углерод имеет четыре основных аллотропных модификации: алмаз, графит, карбин и фуллерен.

Алмаз - кристаллическое вещество, прозрачное, сильно преломляет лучи света, очень твёрдое, не проводит электрический ток, плохо проводит тепло, ρ = 3,5 г/см3; Т°пл. = 3730 °C; Т°кип = 4830 °C. В структуре алмаза каждый атом углерода находится в состоянии sp3-гибридизации и имеет четырех соседей, которые расположены в вершинах правильного тетраэдра, весь кристалл представляет собой трехмерный каркас, с этим связана высокая твердость алмаза, самая высокая среди природных веществ. Кристаллизуется в виде двух полиморфных модификаций - кубической и гексагональной.

Алмаз кубический

Алмаз гексагональный

Графит - мягкое вещество серого цвета со слабым металлическим блеском, жирное на ощупь, проводит электрический ток; ρ = 2,5 г/см3. Атомы углерода находятся в состоянии sp2-гибридизации и связаны в плоские слои, состоящие из соединенных ребрами шестиугольников, наподобие пчелиных сот. Каждый атом в слое имеет трех соседей, для образования трех ковалентных связей атом предоставляет три электрона, а четвертый электрон образует p-связь и делокализован по всему кристаллу.

Этим объясняется способность графита расщепляться на тонкие чешуйки, которые очень прочны, его металлический блеск, тепло - и электропроводность. Графит - наиболее устойчивая при комнатной температуре аллотропная модификация углерода.

Углерод - важнейший биогенный элемент, составляющий основу жизни на Земле, структурная единица огромного числа органических соединений, участвующих в построении организмов и обеспечении их жизнедеятельности (биополимеры, а также многочисленные низкомолекулярные биологически активные вещества - витамины, гормоны, медиаторы и др.). Значительную часть необходимой организмам энергии образуется в клетках за счет окисления углерода. Возникновение жизни на Земле рассматривается в современной науке как сложный процесс эволюции углеродистых соединений.

Уникальная роль углерода в живой природе обусловлена его свойствами, которыми в совокупности не обладает ни один другой элемент периодической системы. Между атомами углерода, а также между углеродом и другими элементами образуются прочные химические связи, которые, однако, могут быть разорваны в сравнительно мягких физиологических условиях (эти связи могут быть одинарными, двойными и тройными). Способность углерода образовывать 4 равнозначные валентные связи с другими атомами. Углерод создает возможность для построения углеродных скелетов различных типов - линейных, разветвленных, циклических. Показательно, что всего три элемента - С, О, Н - составляют 98% общей массы живых организмов. Этим достигается определенная экономичность в живой природе: при практически безграничном структурном разнообразии углеродистых соединений небольшое число типов химических связей позволяет на много сократить количество ферментов, необходимых для расщепления и синтеза органических веществ. Особенности строения атома углерода лежит в основе различных видов изомерии органических соединений (способность к оптической изомерии оказалась решающей в биохимической эволюции аминокислот, углеводов и некоторых алкалоидов).

Перейти на страницу:
1 2